Future of Analog Design and Upcoming Challenges in Nanometer CMOS

Greg Taylor

VLSI Design 2010

Outline

- Introduction
- Logic processing trends
- Analog design trends
- Analog design challenge
- Approaches
- Conclusion

Introduction

- This talk will focus on analog design on digital processes
 - Small geometries
 - Low voltages
 - Integration with logic
- Processes optimized for analog circuits are a different problem

Introduction (cont)

Intel view:

- Don't get in the way of digital scaling
- Transistor count doubles every 24 mont
- Don't violate the Law!
- Alternative view
 - Logic processes are leading the way to smaller geometries
 - They provide the first look at the design of analog circuits at these feature sizes

Outline

- Introduction
- Logic processing trends
- Analog design trends
- Analog design challenge
- Approaches
- Conclusion

Logic Processing Trends

 Performance and functionality continue to improve with increased transistor count

SRAM Scaling

30 Years of Scaling

Process trends: New Generation Every 2 Years

Yield Trends

Higher

Chip

Yield

2002 2003 2004 2005 2006 2007 2008 2009 2010

- 2 year technology cycles
 - High yields
 - Fast ramp to volume
- Progress is not slowing

Outline

- Introduction
- Logic processing trends
- Analog design trends
- Analog design challenge
- Approaches
- Conclusion

Why Analog Design?

(analog circuits are needed to interface with reality. reality is analog)

Configuration

Temporal

Electrical

Source: Rachael Parker

Thermal

Growth in Analog Circuits

Microprocessor:
clock generator
IO bus
thermal shutdown
trim

Multi-core SOC:

multi-domain clocking 10-20 PLLs

high speed serial IO low jitter clock

advanced thermal and power management

unit-level trim of analog components

Performance Requirements ~10x over a decade

Pentium® II Processor

- 250 nm
- PLL: 400 MHz Fmax
- DTS: 140 °C ± 15 °C single trip point
- I/O: 266/400 MT/s

Core™ i7 Processor

- 45 nm
- PLL: 3+ GHz Fmax
- DTS: -10 °C to 140 °C
 1 °C Resolution
- I/O: 6400 MT/s

Outline

- Introduction
- Logic processing trends
- Analog design trends
- Analog design challenge
- Approaches
- Conclusion

Voltage Scaling

- Voltage scaling has slowed on recent technologies
 - This is the technology maximum voltage

Analog Scaling with Voltage

- Reduced operating range of classical circuits
 - Signal shrinks
 - Noise doesn't
- Low overdrive exacerbates Vt mismatch
- Weakly "off" switches leak

Device Mismatch Trend

- Transistor threshold variation increases with shrinking device size
 - $\sigma V_t = C_2 / \sqrt{W_{eff} \cdot L_{eff}}$
- Process improvements provide some relief
 - Scaled device sizes still lead to variation increases

Scaling of σVt Random Variation

NMOS mismatch coefficient improvements with technology scaling

Kuhn, "Reducing Variation in Advanced Logic Technologies", IEDM 2007

Noise

Thermal noise

$$\overline{dV_{eq}^2} = 4kT \left(\frac{2/3}{g_m}\right) df \approx \frac{L}{W}$$

1/f noise

$$\overline{dV_{eq}^2} = \frac{KF}{WL \cdot C_{ox}^2} \frac{df}{f}$$

- Dynamic range decreases for smaller L and W
 - Sansen, "Analog IC Design in Nanometer CMOS Technologies", VLSI Design 2009

Co-Optimization

- Time to market can force design in parallel with process development
 - The good news is that process development is in parallel with design
- Reserve some adaptability to cover when development does not go as expected
- Note:
 - Digital circuits generally have analog success criteria
 - Analog circuits usually have binary success
 criteria

Other Challenges

- Mixed Signal Validation:
 - When digital and analog circuits are mixed the validation approaches that are effective for either in isolation fail to adequately cover the combination
 - Circuit simulation runs times explode
 - RTL simulation doesn't model analog behavior
- Testability
 - Increasingly difficult to characterize the clock
 - Low bandwidth, legacy DFT pins
 - Difficult to do volume analog test, yet statistical design requires statistical test

Outline

- Introduction
- Logic processing trends
- Analog design trends
- Analog design challenge
- Approaches
- Conclusion

Avoid Analog If You Can

- Many functions can be implemented with analog or digital approaches
 - If possible, choose digital

Copy* It If You Can't Avoid It

- A new implementation is fun
 - It's also a way to find new kinds of mistakes to make
 - It's more expensive and takes longer than copying
- Take advantage of the work that others have done to find mistakes and validate solutions
 - * Paying attention to IP laws

If You Can't Copy It, Then Apply Good Design Practices

- Keep It Simple!
 - As simple as possible, as digital as possible
- Document your work
 - The flip side of reuse, is that you need to make your own work reusable
 - Documentation improves the quality of design reviews, helping find mistakes sooner
 - People who are reusing your work are invested in finding errors

Good Design Practices

- If you're co-developing along with your process, build in lots of tolerance for process targeting
- Build in tolerance for variation
 - There are only so many atoms available in those transistors
 - Keep matching localized
- Utilize self calibration, trimming, and fuse options
 - This will help increase tolerance to retargeting and variation

If You Can't Fix It, Feature It

Analog to digital converter

- Daly, "A 6b 0.2-to-0.9V Highly Digital Flash ADC with Comparator Redundancy", ISSCC 2008
- Adaptive frequency clocking

 Kurd, "Next Generation Intel Micro-architecture (Nehalem) Clocking Architecture", JSSC 2009

Statistical Design

- Increasing device variation requires variation aware design
 - Worst case design is generally not practical
 - Skew corner simulation does not highlight the impact of within die variation
- Statistical design techniques help predict and understand the impact of variation
 - Monte Carlo
 - Design of Experiments
 - These tools don't replace the need for engineers to understand statistics!

Validation Is Essential

- Circuit simulation
 - It's the time honored approach
 - Necessary, but not sufficient in a mixed signal system
- Mixed signal validation
 - RTL is often discrete time, discrete voltage
 - Hybrid circuits control RTL invisible behavior
 - Impedance, delay, temperature, voltage, current
- Design reviews
 - Reviewer team needs to have variety and engagement

AMS Validation

- Ensure that individual analog blocks work
 - The traditional realm of circuit simulation
- Ensure that analog blocks work together
 - Not just at the center of the spec range
- Ensure that digital and analog work together
 - **Both control and data flow**

Other Rules of Thumb

- Need to enforce supply isolation between analog and digital circuits
- Production vs. simulation schematics
 - It's tempting to make "alternate" cohematics for simulation that include extras
 - Don't
 - If necessary build a test bed in a higher level of hierarchy

Outline

- Introduction
- Logic processing trends
- Analog design trends
- Analog design challenge
- Approaches
- Conclusion

Conclusion

- We are increasing the scope and complexity of analog circuits on logic processes
 - At the same time those processes are becoming harder to work with
 - Eliminate unnecessary analog design
 - Avoid making analog the limiter where possible
 - floorplan constraints, timing margin...
 - Mitigate process scaling non-idealities
 - Trim, offset cancellation, noise shaping, high voltage analog, etc
 - Don't skimp on mixed signal validation

Questions?

Future of Analog Design and Upcoming Challenges in Nanometer CMOS